Essential tremor (ET), one of the most common adult-onset movement disorders, has been associated with cerebellar Purkinje cell degeneration and formation of brainstem Lewy bodies. Recent findings suggest that genetic variants of the leucine-rich repeat and Ig domain containing 1 (LINGO-1) gene could be risk factors for ET. The LINGO-1 protein contains both leucine-rich repeat (LRR) and immunoglobulin (Ig)-like domains in its extracellular region, as well as a transmembrane domain and a short cytoplasmic tail. LINGO-1 can form a ternary complex with Nogo-66 receptor (NgR1) and p75. Binding of LINGO-1 with NgR1 can activate the NgR1 signaling pathway, leading to inhibition of oligodendrocyte differentiation and myelination in the central nervous system. LINGO-1 has also been found to bind with epidermal growth factor receptor (EGFR) and induce downregulation of the activity of EGFR-PI3K-Akt signaling, which might decrease Purkinje cell survival. Therefore, it is possible that genetic variants of LINGO-1, either alone or in combination with other genetic or environmental factors, act to increase LINGO-1 expression levels in Purkinje cells and confer a risk to Purkinje cell survival in the cerebellum. Here, we provide a concise summary of the link between LINGO-1 and neurodegeneration and discuss various hypotheses as to how this could be potentially relevant to ET pathogenesis. © 2012 Zhou et al.
CITATION STYLE
Zhou, Z. dong, Sathiyamoorthy, S., & Tan, E. K. (2012). LINGO-1 and neurodegeneration: Pathophysiologic clues for essential tremor? Tremor and Other Hyperkinetic Movements, 1(1). https://doi.org/10.5334/TOHM.111
Mendeley helps you to discover research relevant for your work.