As the global production of chicken manure has steadily increased, its proper management has become a challenging issue. This study examined process effluent from a bioethanol plant as a co-substrate for efficient anaerobic digestion of chicken manure. An anaerobic continuous reactor was operated in mono-and co-digestion modes by adding increasing amounts of the ethanol plant effluent (0%, 10%, and 20% (v/v) of chicken manure). Methanogenic performance improved significantly in terms of both methane production rate and yield (by up to 66% and 36%, respectively), with an increase in organic loading rate over the experimental phases. Correspondingly, the specific methanogenic activity was significantly higher in the co-digestion sludge than in the mono-digestion sludge. The reactor did not suffer any apparent process imbalance, ammonia inhibition, or nutrient limitation throughout the experiment, with the removal of volatile solids being stably maintained (56.3–58.9%). The amount of ethanol plant effluent appears to directly affect the rate of acidification, and its addition at ≥20% (v/v) to chicken manure needs to be avoided to maintain a stable pH. The overall results suggest that anerobic co-digestion with ethanol plant effluent may provide a practical means for the stable treatment and valorization of chicken manure.
CITATION STYLE
Cheong, D. Y., Harvey, J. T., Kim, J., & Lee, C. (2019). Improving biomethanation of chicken manure by co-digestion with ethanol plant effluent. International Journal of Environmental Research and Public Health, 16(24). https://doi.org/10.3390/ijerph16245023
Mendeley helps you to discover research relevant for your work.