Modulation of environmental conditions on the significant difference in the super cyclone formation rate during the pre- and post-monsoon seasons over the Bay of Bengal

4Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Unlike other tropical ocean basins, the Bay of Bengal (BoB) has two tropical cyclone (TC) seasons: a pre-monsoon season (Pre-MS) and a post-monsoon season (Post-MS). More interestingly, during the period from 1981 to 2016, the global maximum and minimum formation rates of super cyclones (SCs, categories 4 and 5) occurred in the Pre-MS and Post-MS, respectively, in the BoB. Methods including Butterworth filter, box difference index analysis and quantitative diagnosis were utilized herein to detect what and how background environmental factors cause significantly different SC formation rates between the Pre- and Post-MS. Diagnosis results revealed that the vertical temperature difference (VTD) mainly determines whether TCs can develop into SCs during the Post-MS, similar to Pre-MS. It’s in agreement with previous studies demonstrating that the VTD is controlled by the low-level temperature during the Post-MS but is determined by the upper-level temperature during the Pre-MS. The results also revealed that the background sea surface temperature is much higher in the Pre-MS than in the Post-MS and forces higher 1000 hPa-level air temperature. Additionally, there is higher saturated specific humidity (qs) due to the higher temperature in the Pre-MS. The differences in the bottom-level temperature and qs cooperate to predominantly contribute to the significant difference in Vpot2, which could denote the maximum potential intensity of TC, eventually leading to the remarkably different SC formation rates between the Pre- and Post-MS in the BoB.

Cite

CITATION STYLE

APA

Li, Z., Xue, Y., Fang, Y., & Li, K. (2021). Modulation of environmental conditions on the significant difference in the super cyclone formation rate during the pre- and post-monsoon seasons over the Bay of Bengal. Climate Dynamics, 57(9–10), 2811–2822. https://doi.org/10.1007/s00382-021-05840-7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free