Tunnel conductivity switching in a single nanoparticle-based nano floating gate memory

19Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

Abstract

Nanoparticles (NPs) embedded in a conductive or insulating matrix play a key role in memristors and in flash memory devices. However, the role of proximity to the interface of isolated NPs has never been directly observed nor fully understood. Here we show that a reversible local switching in tunnel conductivity can be achieved by applying an appropriate voltage pulse using the tip of a scanning tunnelling microscope on NPs embedded in a TiO2 matrix. The resistive switching occurs in the TiO2 matrix in correlation to the NPs that are in proximity of the surface and it is spatially confined to the single NP size. The tunnel conductivity is increased by more than one order of magnitude. The results are rationalized by a model that include the charge of NPs that work as a nano floating gate inducing local band bending that facilitates charge tunnelling and by the formation and redistribution of oxygen vacancies that concentrate in proximity of the charged NPs. Our study demonstrates the switching in tunnel conductivity in single NP and provides useful information for the understanding mechanism or resistive switching.

References Powered by Scopus

The missing memristor found

9804Citations
N/AReaders
Get full text

Magnetic nanoparticles: Synthesis, protection, functionalization, and application

6221Citations
N/AReaders
Get full text

Memristive switching mechanism for metal/oxide/metal nanodevices

2675Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Recommended Methods to Study Resistive Switching Devices

516Citations
N/AReaders
Get full text

High Performance Flexible Nonvolatile Memory Based on Vertical Organic Thin Film Transistor

113Citations
N/AReaders
Get full text

Nanostructured materials for non-volatile organic transistor memory applications

108Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Gambardella, A., Prezioso, M., & Cavallini, M. (2014). Tunnel conductivity switching in a single nanoparticle-based nano floating gate memory. Scientific Reports, 4. https://doi.org/10.1038/srep04196

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 13

62%

Researcher 6

29%

Professor / Associate Prof. 1

5%

Lecturer / Post doc 1

5%

Readers' Discipline

Tooltip

Materials Science 9

50%

Chemistry 3

17%

Physics and Astronomy 3

17%

Engineering 3

17%

Article Metrics

Tooltip
Social Media
Shares, Likes & Comments: 1

Save time finding and organizing research with Mendeley

Sign up for free