The results of a theoretical and experimental study of the processes of ignition and combustion of a single composite liquid fuel (CLF) droplet based on wet coal processing waste and combustible municipal solid waste under radiant and convective heating are presented. Based on the results of a detailed analysis of video recordings and previously obtained experimental data from the ignition and combustion of a single CLF droplet, a mathematical model was developed. The advantage of the developed mathematical model lies in the specification of sequential physical and chemical processes of the high-temperature decomposition of fuel in a high-temperature gaseous medium. A numerical simulation of combustion characteristics was carried out in the Ansys Fluent commercial software for five different CLF compositions. The ignition-delay times were established for fuel droplets that were in a preheated motionless air environment, a temperature in the range of 723–1273 K, and an air flow heated to 723–973 K moving at a velocity of 3 m/s. Using the asymptotic procedure, satisfactory analytical solutions are obtained for the multistage nonlinear problem of ignition and combustion of a single CLF droplet. The possibility for the practical application of the developed program in Ansys Fluent in predicting the characteristics of the ignition processes of CLF droplets is substantiated.
CITATION STYLE
Antonov, D., Glushkov, D., Paushkina, K., Kuznechenkova, D., & Ramanathan, A. (2022). A Mathematical Model of Industrial Waste-Derived Fuel Droplet Combustion in High-Temperature Air. Applied Sciences (Switzerland), 12(23). https://doi.org/10.3390/app122312273
Mendeley helps you to discover research relevant for your work.