The purpose of this study was to determine whether using ultrasound-targeted microbubble destruction (UTMD) to transfect rat wounded Achilles tendon with insulin-like growth factor-1 (IGF-1) cDNA would enhance tissue regeneration. Forty rats with injured Achilles tendons were transfected with IGF-1 cDNA and divided into: (1) control group, (2) plasmid-only group, (3) plasmid+ultrasound group and (4) plasmid+microbubbles+ultrasound group. The IGF-1 cDNA expression of the Achilles tendons was evaluated by histological adhesion finding, quantitative real-time reverse transcription PCR examination and biomechanical test. The adhesion scores in group 4 were lowest at weeks 2 and 8 (P<0.05). The IGF-1 expression in the Achilles tendons was highest in group 4 at weeks 2 and 8 (P<0.05). Compared with those of other three groups, the granulation tissues and inflammatory-cell infiltration were lighter in group 4 at week 2, and the scars on the tendons in group 4 were less evident at week 8. The messenger RNA (mRNA) of IGF-1 of group 4 was upregulated at weeks 2 and 8 (P<0.01). Groups 4 and 3 showed a greater maximum load, stiffness and ultimate stress (P<0.05). Maximum load, stiffness and ultimate stress of healing Achilles tendons in group 4 were highest at weeks 2 and 8 (P<0.05).
CITATION STYLE
Tang, Y., Leng, Q., Xiang, X., Zhang, L., Yang, Y., & Qiu, L. (2015). Use of ultrasound-targeted microbubble destruction to transfect IGF-1 cDNA to enhance the regeneration of rat wounded Achilles tendon in vivo. Gene Therapy, 22(8), 610–618. https://doi.org/10.1038/gt.2015.32
Mendeley helps you to discover research relevant for your work.