The ability to forecast the power produced by renewable energy plants in the short and middle term is a key issue to allow a high-level penetration of the distributed generation into the grid infrastructure. Forecasting energy production is mandatory for dispatching and distribution issues, at the transmission system operator level, as well as the electrical distributor and power system operator levels. In this paper, we present three techniques based on neural and fuzzy neural networks, namely the radial basis function, the adaptive neuro-fuzzy inference system and the higher-order neuro-fuzzy inference system, which are well suited to predict data sequences stemming from real-world applications. The preliminary results concerning the prediction of the power generated by a large-scale photovoltaic plant in Italy confirm the reliability and accuracy of the proposed approaches.
CITATION STYLE
Rosato, A., Altilio, R., Araneo, R., & Panella, M. (2017). Prediction in photovoltaic power by neural networks. Energies, 10(7). https://doi.org/10.3390/en10071003
Mendeley helps you to discover research relevant for your work.