Background: Lower extremity injuries are common among runners. Recent trends in footwear have included minimal and maximal running shoe types. Maximal running shoes are unique because they provide the runner with a highly cushioned midsole in both the rearfoot and forefoot. However, little is known about how maximal shoes influence running biomechanics. Purpose: To examine the influence of maximal running shoes on biomechanics before and after a 5-km (5K) run as compared with neutral running shoes. Study Design: Controlled laboratory study. Methods: Fifteen female runners participated in 2 testing sessions (neutral shoe session and maximal shoe session), with 7 to 10 days between sessions. Three-dimensional kinematic and kinetic data were collected while participants ran along a 10-m runway. After 5 running trials, participants completed a 5K treadmill run, followed by 5 additional running trials. Variables of interest included impact peak of the vertical ground-reaction force, loading rate, and peak eversion. Differences were determined by use of a series of 2-way repeated-measures analysis of variance models (shoe × time). Results: A significant main effect was found for shoe type for impact peak and loading rate. When the maximal shoe was compared with the neutral shoe before and after the 5K run, participants exhibited an increased loading rate (mean ± SE: pre–maximal shoe, 81.15 body weights/second [BW/s] and pre–neutral shoe, 60.83 BW/s [P
CITATION STYLE
Pollard, C. D., Ter Har, J. A., Hannigan, J. J., & Norcross, M. F. (2018). Influence of Maximal Running Shoes on Biomechanics Before and After a 5K Run. Orthopaedic Journal of Sports Medicine, 6(6). https://doi.org/10.1177/2325967118775720
Mendeley helps you to discover research relevant for your work.