The Pre-main Sequence: Challenges and Prospects for Asteroseismology

4Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

Stars do not simply pop up on the main sequence. Before the stars arrive on the zero-age main sequence, they form in the collapses of molecular clouds, gain matter through accretion processes, and compress their cores until hydrogen can burn in full equilibrium. Although this evolutionary phase lasts a relatively short time, it is the imprint of these important physical processes that is often ignored by simplified assumptions. While asteroseismology offers a great tool to investigate these physical processes, studying pre-MS oscillations in turn has the potential to further advance the field. Asteroseismology of pre-main sequence stars faces observational and theoretical challenges. The remnants of their birth environment which is often still surrounding the young stars causes variability that can interfere with the signal of pulsations. The lack of long time-base satellite observations in addition limits the applications of the method. Theoretical models of pre-main sequence stars include several assumptions and simplifications that influence the calculation of pulsation frequencies and excitation properties of pulsation modes. Keeping all this in mind, the prospects for pre-main sequence asteroseismology are manifold. An improved understanding of the structure of young stellar objects has the potential to answer some of the open questions of stellar evolution, including angular momentum transport and the formation of magnetic fields. While gyrochronology, for example, struggles to determine the ages of the youngest clusters, pulsations in pre-main sequence stars can function as an independent age indicator yielding higher precision for single stars. The increasing interest of stellar astrophysics in general to investigate the formation and early evolution of stars and planets illustrates the growing importance of pre-main sequence asteroseismology. In this work we discuss its potential for an advancement of our understanding of stellar structure and evolution.

Cite

CITATION STYLE

APA

Zwintz, K., & Steindl, T. (2022, June 8). The Pre-main Sequence: Challenges and Prospects for Asteroseismology. Frontiers in Astronomy and Space Sciences. Frontiers Media S.A. https://doi.org/10.3389/fspas.2022.914738

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free