Recent advances in fundamental immunology are changing paradigms for management of advanced cancer, now acknowledged as a chronic disease whose prevalence will increase, and one whose complexity makes it difficult to control. Immunotherapy is emerging as an alternative, with new monoclonal antibodies, therapeutic vaccines and deeper understanding of fundamental phenomena in the interaction between tumor and immune system. These novel insights concern mechanisms of programmed contraction of the immune response, characterization of molecular and cellular markers of immunosenescence, the dual role of inflammation, characterisation of myeloid-derived suppressor cells and cancer stem cells, and the phenomena of immunogenic apoptosis and oncogene addiction. Additionally, new data drive a deeper understanding of four barriers to overcome in control of advanced cancer: the complexity of biological systems, tumor heterogeneity, tumor mutation rates, and human genome-environment mismatch. The new landscape points to six main strategies: manage advanced cancer as a chronic disease, find relevant molecular markets for patient stratification, develop a rationale for therapeutic combinations, target regulatory control loops in the immune system, expand mathematical modeling capacity, and evaluate complex health intervention packages in real-world conditions. These transitions in cancer immunotherapy research are illustrated in this paper through description of ongoing projects at Cuba's Molecular Immunology Center.
CITATION STYLE
Lage Dávila, A. (2014). Immunotherapy and complexity: Overcoming barriers to control of advanced cancer. MEDICC Review. https://doi.org/10.37757/mr2014.v16.n3-4.13
Mendeley helps you to discover research relevant for your work.