Mapping cell-matrix stresses during stretch reveals inelastic reorganization of the cytoskeleton

74Citations
Citations of this article
140Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The mechanical properties of the living cell are intimately related to cell signaling biology through cytoskeletal tension. The tension borne by the cytoskeleton (CSK) is in part generated internally by the actomyosin machinery and externally by stretch. Here we studied how cytoskeletal tension is modified during stretch and the tensional changes undergone by the sites of cell-matrix interaction. To this end we developed a novel technique to map cell-matrix stresses during application of stretch. We found that cell-matrix stresses increased with imposition of stretch but dropped below baseline levels on stretch release. Inhibition of the actomyosin machinery resulted in a larger relative increase in CSK tension with stretch and in a smaller drop in tension after stretch release. Cell-matrix stress maps showed that the loci of cell adhesion initially bearing greater stress also exhibited larger drops in traction forces after stretch removal. Our results suggest that stretch partially disrupts the actinmyosin apparatus and the cytoskeletal structures that support the largest CSK tension. These findings indicate that cells use the mechanical energy injected by stretch to rapidly reorganize their structure and redistribute tension. © 2008 by the Biophysical Society.

References Powered by Scopus

Mechanotransduction across the cell surface and through the cytoskeleton

2587Citations
N/AReaders
Get full text

Local force and geometry sensing regulate cell functions

1942Citations
N/AReaders
Get full text

Nonlinear elasticity in biological gels

1394Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Physics of adherent cells

290Citations
N/AReaders
Get full text

Reinforcement versus fluidization in cytoskeletal mechanoresponsiveness

233Citations
N/AReaders
Get full text

Stretch-induced stress fiber remodeling and the activations of JNK and ERK depend on mechanical strain rate, but not FAK

140Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Gavara, N., Roca-Cusachs, P., Sunyer, R., Farré, R., & Navajas, D. (2008). Mapping cell-matrix stresses during stretch reveals inelastic reorganization of the cytoskeleton. Biophysical Journal, 95(1), 464–471. https://doi.org/10.1529/biophysj.107.124180

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 59

56%

Researcher 33

31%

Professor / Associate Prof. 9

9%

Lecturer / Post doc 4

4%

Readers' Discipline

Tooltip

Agricultural and Biological Sciences 37

40%

Physics and Astronomy 25

27%

Engineering 24

26%

Biochemistry, Genetics and Molecular Bi... 7

8%

Save time finding and organizing research with Mendeley

Sign up for free