Digital gene expression analysis of mature seeds of transgenic maize overexpressing Aspergillus niger phyA2 and its non-transgenic counterpart.

8Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The next generation sequencing technologies have been recently used for transcriptome analysis in many organisms because of the decreased sequencing cost and increased sequence output. In this study, we used digital gene expression (DGE) technique to compare the transcriptomic changes in mature seeds between transgenic maize overexpressing Aspergillus niger phyA2 and its non-transgenic counterpart. Deep sequencing of DGE libraries of the transgenic and its non-transgenic counterpart seeds generated 3,783,500 and 3,790,500 reads of 21-nucleotide, respectively, with frequencies spanning over four orders of magnitude. In transgenic maize, 53.97% of the unambiguous signature tags were mapped to the maize B73 reference genome, and 46.47% of genes were detected by at least two reads; in non-transgenic maize, the corresponding numbers were 51.38% and 47.39%. Compared with non-transgenic counterpart, about 12% of detected genes were differentially expressed in the transcriptome of transgenic maize seeds. Among these differentially expressed genes, there were 23 transcription factors in 14 families and no allergen genes. Pathway enrichment analysis revealed that 21 pathways were significantly affected by the transgenic event, in which the pathway involved in protein processing in endoplasmic reticulum was the most significantly affected. Results from this study indicated that both intended and unintended transcriptomic changes occurred in the transgenic maize, thus emphasizing the importance of transcriptome profiling in risk assessment of transgenic events.

Cite

CITATION STYLE

APA

Rao, J., Yang, L., Wang, C., Zhang, D., & Shi, J. (2013). Digital gene expression analysis of mature seeds of transgenic maize overexpressing Aspergillus niger phyA2 and its non-transgenic counterpart. GM Crops & Food, 4(2), 98–108. https://doi.org/10.4161/gmcr.25593

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free