Is it possible to predict electromagnetic resonances in proteins, DNA and RNA?

  • Cosic I
  • Cosic D
  • Lazar K
N/ACitations
Citations of this article
29Readers
Mendeley users who have this article in their library.

Abstract

It has been shown that there are electromagnetic resonances in biological molecules (proteins, DNA and RNA) in the wide range of frequencies including THz, GHz, MHz and KHz. These resonances could be important for biological function of macromolecules, as well as could be used in development of devices like molecular computers. As experimental measurements of macromolecular resonances are timely and costly there is a need for computational methods that can reliably predict these resonances. We have previously used the Resonant Recognition Model (RRM) to predict electromagnetic resonances in tubulin and microtubules. Consequently, these predictions were confirmed experimentally. The RRM is developed by authors and is based on findings that protein, DNA and RNA electromagnetic resonances are related to the free electron energy distribution along the macromolecule. Here, we applied the Resonant Recognition Model (RRM) to predict possible electromagnetic resonances in telomerase as an example of protein, telomere as an example of DNA and TERT mRNA as an example of RNA macromolecules. We propose that RRM is a powerful model that can computationally predict protein, DNA and RNA electromagnetic resonances.

Cite

CITATION STYLE

APA

Cosic, I., Cosic, D., & Lazar, K. (2015). Is it possible to predict electromagnetic resonances in proteins, DNA and RNA? EPJ Nonlinear Biomedical Physics, 3(1). https://doi.org/10.1140/epjnbp/s40366-015-0020-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free