A general formula is derived that can be used to calculate the reductions in emissions of inert pollutants required to achieve National Ambient Air Quality Standards (NAAQS) and to predict future urban atmospheric concentrations. The derivation incorporates the main features of atmospheric diffusion modeling and takes account of all categories of sources and their spatial distribution. In our previous paper, carbon monoxide (CO) emissions from light duty vehicles were considered separately with the approximation that emissions from other sources of CO would grow and be controlled proportionately to that of light duty vehicles. The new general formula is applied to Phoenix-Tucson using EPA data. It Is found that Phoenix-Tucson will meet the NAAQS for CO by 1985 if a 12 g/mi light duty vehicle emission standard is adopted. The EPA, using the same data in a modified rollback analysis, had predicted that Phoenix-Tucson, as well as a number of other localities, would not achieve the NAAQS even if the 3.4 g/mi statutory standard went into effect on schedule. The underlying reasons for these very different predictions can be readily identified by means of the general formula. It is essential that the data and parameters used in these predictions be internally consistent. It is also noted that the current Federal Test Procedure (CVS-CH) for vehicle emissions gives data inconsistent with that needed to predict CO air quality with a correct methodology. © 1975 Taylor & Francis Group, LLC.
CITATION STYLE
Chang, T. Y., & Weinstock, B. (1975). Generalized Rollback Modeling for Urban Air Pollution Control. Journal of the Air Pollution Control Association, 25(10), 1033–1037. https://doi.org/10.1080/00022470.1975.10470175
Mendeley helps you to discover research relevant for your work.