Effects of carrier materials on anaerobic hydrogen production by continuous mixed immobilized sludge reactors

0Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

To enhance hydrogen production rate and increase substrate utilization efficiency of anaerobic fermentation, three carrier materials, Granular Activated Carbon (GAC), Zeolite Molecular Sieve (ZMS) and Biological Ceramic Ring (BCR), were used as carrier materials in Continuous Mixed Immobilized Sludge Reactors (CMISRs). The effects of carrier materials and substrate organic loading rate (OLR, OLR = 12, 24, 36, 48 kg/m3/d) on biohydrogen production were investigate, respectively. The highest HPRs of ZMS, GAC and BCR were achieved under the OLR of 36 kg COD/m3/d, and were 2.01, 1.81, and 2.86 L/L/d, respectively. The highest COD removal efficiencies of ZMS, GAC and BCR were 38.95 % (OLR = 24 kg COD/m3/d), 36.47 % (OLR = 36 kg COD/m3/d), and 41.03 % (OLR = 36 kg COD/m3/d), respectively. The best substrate degradation rate of ZMS, GAC and BCR were 40.33 % (OLR = 24 kg COD/m3/d), 38.30 % (OLR = 24 kg COD/m3/d) and 45.60 % (OLR = 12 kg COD/m3/d). The results indicated that biological ceramic ring get better hydrogen production and wastewater treatment performance as sludge carrier material for hydrogen production in immobilized bioprocesses.

Cite

CITATION STYLE

APA

Li, Q., Cao, Y., & Li, Y. (2020). Effects of carrier materials on anaerobic hydrogen production by continuous mixed immobilized sludge reactors. Periodica Polytechnica Chemical Engineering, 65(1), 124–132. https://doi.org/10.3311/PPch.13771

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free