Emerging link between Alzheimer's disease and homeostatic synaptic plasticity

71Citations
Citations of this article
208Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Alzheimer's disease (AD) is an irreversible brain disorder characterized by progressive cognitive decline and neurodegeneration of brain regions that are crucial for learning and memory. Although intracellular neurofibrillary tangles and extracellular senile plaques, composed of insoluble amyloid-β (Aβ) peptides, have been the hallmarks of postmortem AD brains, memory impairment in early AD correlates better with pathological accumulation of soluble Aβ oligomers and persistent weakening of excitatory synaptic strength, which is demonstrated by inhibition of long-term potentiation, enhancement of long-term depression, and loss of synapses. However, current, approved interventions aiming to reduce Aβ levels have failed to retard disease progression; this has led to a pressing need to identify and target alternative pathogenic mechanisms of AD. Recently, it has been suggested that the disruption of Hebbian synaptic plasticity in AD is due to aberrant metaplasticity, which is a form of homeostatic plasticity that tunes the magnitude and direction of future synaptic plasticity based on previous neuronal or synaptic activity. This review examines emerging evidence for aberrant metaplasticity in AD. Putative mechanisms underlying aberrant metaplasticity in AD will also be discussed. We hope this review inspires future studies to test the extent to which these mechanisms contribute to the etiology of AD and offer therapeutic targets.

Cite

CITATION STYLE

APA

Jang, S. S., & Chung, H. J. (2016). Emerging link between Alzheimer’s disease and homeostatic synaptic plasticity. Neural Plasticity. Hindawi Limited. https://doi.org/10.1155/2016/7969272

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free