Investigation of Corrosion Protection of Austenitic Stainless Steel in 5.5 M Polluted Phosphoric Acid Using 5-Azidomethyl-7-morpholinomethyl-8-hydroxyquinoline as an Ecofriendly Inhibitor

12Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The use of 5-azidomethyl-7-morpholinomethyl-8-hydroxyquinoline (AMH) as a corrosion inhibitor for AISI 321 stainless steel in 5.5 M polluted phosphoric acid was investigated using the hydrogen evolution technique, linear polarization curves, and impedance spectroscopy. Impedance measurements revealed that the dissolution of AISI 321 in 5.5 M polluted phosphoric acid was controlled by an activation mechanism, unchanged even with the addition of AMH at different concentrations. Polarization results showed that the inhibition ability was enhanced with increasing inhibitor concentration. AMH acted as a mixed-type inhibitor by random adsorption on the alloy surface, whatever the nature of the reaction that is taking place. The adsorption of AMH on the AISI 321 surface was also discussed via the Langmuir adsorption isotherm. The influence of elevating the solution temperature on the corrosion inhibition performance was studied. A quantum chemistry study with the DFT method was also conducted, which supplied a logical and exploitable theoretical explanation of the adsorption and the inhibition action of AMH on AISI 321.

Cite

CITATION STYLE

APA

Mazkour, A., El Hajjaji, S., Labjar, N., Lotfi, E. M., & El Mahi, M. (2021). Investigation of Corrosion Protection of Austenitic Stainless Steel in 5.5 M Polluted Phosphoric Acid Using 5-Azidomethyl-7-morpholinomethyl-8-hydroxyquinoline as an Ecofriendly Inhibitor. International Journal of Corrosion, 2021. https://doi.org/10.1155/2021/6666811

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free