Enhancer can transcribe RNAs, however, most of them were neglected in traditional RNA-seq analysis workflow. Here, we developed a Pipeline for Enhancer Transcription (PET, http://fun-science.club/PET) for quantifying enhancer RNAs (eRNAs) from RNA-seq. By applying this pipeline on lung cancer samples and cell lines, we showed that the transcribed enhancers are enriched with histone marks and transcription factor motifs (JUNB, Hand1-Tcf3 and GATA4). By training a machine learning model, we demonstrate that enhancers can predict prognosis better than their nearby genes. Integrating the Hi-C, ChIP-seq and RNA-seq data, we observe that transcribed enhancers associate with cancer hallmarks or oncogenes, among which LcsMYC-1 (Lung cancer-specific MYC eRNA-1) potentially supports MYC expression. Surprisingly, a significant proportion of transcribed enhancers contain small protein-coding open reading frames (sORFs) and can be translated into microproteins. Our study provides a computational method for eRNA quantification and deepens our understandings of the DNA, RNA and protein nature of enhancers.
CITATION STYLE
Wu, Y., Yang, Y., Gu, H., Tao, B., Zhang, E., Wei, J., … Mao, R. (2020). Multi-omics analysis reveals the functional transcription and potential translation of enhancers. International Journal of Cancer, 147(8), 2210–2224. https://doi.org/10.1002/ijc.33132
Mendeley helps you to discover research relevant for your work.