The Mouse Retinal Organoid Trisection Recipe: Efficient Generation of 3D Retinal Tissue from Mouse Embryonic Stem Cells

10Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The introduction of stem cell-based technologies for the derivation of three-dimensional retinal tissues, the so-called retinal organoids, offers many new possibilities for vision research: Organoids facilitate studies on retinal development and in vitro retinal disease modeling, as well as being valuable for drug testing. Further, retinal organoids also provide an unlimited cell source for cell replacement therapies. Here, we describe our protocol for efficiently differentiating large, stratified retinal organoids from mouse embryonic stem cells: unbiased manual dissection of the developing retinal organoid at an early stage into three evenly sized neuroepithelial portions (trisection step) doubles the yield of high-quality organoids. We also describe some useful applications of the protocol, e.g., generation of rod- or cone-enriched retinal organoids, AAV transfection, and cell birth dating. In addition, we provide details of how to process retinal organoids for single organoid gene expression analysis, immunohistochemistry, and electron microscopy.

Cite

CITATION STYLE

APA

Völkner, M., Kurth, T., & Karl, M. O. (2019). The Mouse Retinal Organoid Trisection Recipe: Efficient Generation of 3D Retinal Tissue from Mouse Embryonic Stem Cells. In Methods in Molecular Biology (Vol. 1834, pp. 119–141). Humana Press Inc. https://doi.org/10.1007/978-1-4939-8669-9_9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free