Softness of hydrated salt crystals under deliquescence

4Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Deliquescence is a first-order phase transition, happening when a salt absorbs water vapor. This has a major impact on the stability of crystalline powders that are important for example in pharmacology, food science and for our environment and climate. Here we show that during deliquescence, the abundant salt sodium sulfate decahydrate, mirabilite (Na2SO4·10H2O), behaves differently than anhydrous salts. Using various microscopy techniques combined with Raman spectroscopy, we show that mirabilite crystals not only lose their facets but also become soft and deformable. As a result, microcrystals of mirabilite simultaneously behave crystalline-like in the core bulk and liquid-like at the surface. Defects at the surface can heal at a speed much faster than the deliquescence rate by the mechanism of visco-capillary flow over the surface. While magnesium sulfate hexahydrate (MgSO4⋅6H2O) behaves similarly during deliquescence, a soft and deformable state is completely absent for the anhydrous salts sodium chloride (NaCl) and sodium sulfate thenardite (Na2SO4). The results highlight the effect of crystalline water, and its mobility in the crystalline structure on the observed softness during deliquescence. Controlled hydrated salts have potential applications such as thermal energy storage, where the key parameter is relative humidity rather than temperature.

Cite

CITATION STYLE

APA

Wijnhorst, R., Demmenie, M., Jambon-Puillet, E., Ariese, F., Bonn, D., & Shahidzadeh, N. (2023). Softness of hydrated salt crystals under deliquescence. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-36834-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free