Diffusion in copper/cobalt systems under high magnetic fields

4Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

Comprehensive research on a high magnetic field’s effect on diffusion is lacking; hence, this study investigates the effect of the magnetization of such a field on diffusion using a copper/cobalt diffusion couple in the diamagnetic/ferromagnetic states, respectively. The diffusion couple was formed using explosive welding to avoid diffusion during manufacturing. The diffusion couple annealed within a temperature range of 1165 –1265 K under a 0–6-T high magnetic field. The angle between the diffusion and magnetic field directions was set as 0◦ and then 180◦ . The penetration profiles of cobalt volume diffusion in the copper and grain-boundary diffusion of copper in cobalt were constructed using an electron probe micro analyzer. The high magnetic field increased the volume diffusivity of cobalt in copper, but had no evident effect on the grain-boundary diffusivity of copper in cobalt, irrespective of the magnetic field direction. An Arrhenius plot of the cobalt volume diffusivity in copper demonstrated that the applied high magnetic field enhanced diffusion by changing the frequency factor rather than the activation energy; this can be attributed to the increased diffusion entropy caused by changing the vacancy concentration, which resulted from the introduction of magnetization under a high magnetic field.

Cite

CITATION STYLE

APA

Zhang, Z., Zhao, X., & Tsurekawa, S. (2021). Diffusion in copper/cobalt systems under high magnetic fields. Materials, 14(11). https://doi.org/10.3390/ma14113104

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free