Creation and validation of a chest X-ray dataset with eye-tracking and report dictation for AI development

65Citations
Citations of this article
96Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We developed a rich dataset of Chest X-Ray (CXR) images to assist investigators in artificial intelligence. The data were collected using an eye-tracking system while a radiologist reviewed and reported on 1,083 CXR images. The dataset contains the following aligned data: CXR image, transcribed radiology report text, radiologist’s dictation audio and eye gaze coordinates data. We hope this dataset can contribute to various areas of research particularly towards explainable and multimodal deep learning/machine learning methods. Furthermore, investigators in disease classification and localization, automated radiology report generation, and human-machine interaction can benefit from these data. We report deep learning experiments that utilize the attention maps produced by the eye gaze dataset to show the potential utility of this dataset.

Cite

CITATION STYLE

APA

Karargyris, A., Kashyap, S., Lourentzou, I., Wu, J. T., Sharma, A., Tong, M., … Moradi, M. (2021). Creation and validation of a chest X-ray dataset with eye-tracking and report dictation for AI development. Scientific Data, 8(1). https://doi.org/10.1038/s41597-021-00863-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free