A contact representation by triangles of a graph is a set of triangles in the plane such that two triangles intersect on at most one point, each triangle represents a vertex of the graph and two triangles intersects if and only if their corresponding vertices are adjacent. De Fraysseix, Ossona de Mendez and Rosenstiehl proved that every planar graph admits a contact representation by triangles. We strengthen this in terms of a simultaneous contact representation by triangles of a planar map and of its dual. A primal-dual contact representation by triangles of a planar map is a contact representation by triangles of the primal and a contact representation by triangles of the dual such that for every edge uv, bordering faces f and g, the intersection between the triangles corresponding to u and v is the same point as the intersection between the triangles corresponding to f and g. We prove that every 3-connected planar map admits a primal-dual contact representation by triangles. Moreover, the interiors of the triangles form a tiling of the triangle corresponding to the outer face and each contact point is a corner of exactly three triangles. Then we show that these representations are in one-to-one correspondence with generalized Schnyder woods defined by Felsner for 3-connected planar maps. © 2012 Springer Science+Business Media, LLC.
CITATION STYLE
Gonçalves, D., Lévêque, B., & Pinlou, A. (2012). Triangle contact representations and duality. Discrete and Computational Geometry, 48(1), 239–254. https://doi.org/10.1007/s00454-012-9400-1
Mendeley helps you to discover research relevant for your work.