Background: The deregulation of microRNAs has been reported to play a pivotal role in hepatocellular carcinoma (HCC). MiR-126-3p has been reported to be associated with poor prognosis in HCC. However the underlying mechanism of miR-126-3p in HCC remains unclear. Methods: The expression levels of miR-126-3p in HCC tissues and cells were detected by RT-PCR. Transwell assay and capillary tube formation assay were applied to assess the metastasis and angiogenesis in vitro. Nude mice subcutaneous tumor model was used to perform in vivo study. Dual- luciferase reporter assay was conducted to confirm the direct binding of miR-126-3p and target genes. The changes of biomarker protein levels were examined by western blot and Immunohistochemistry. Results: We observed that the miR-126-3p expression levels in HCC tissues and cells were significantly down-regulated. Through gain- and loss- of function studies, we showed that miR-126-3p dramatically inhibited HCC cells from migrating and invading extracellular matrix gel and suppressed capillary tube formation of endothelial cells in vitro. Furthermore, overexpression of miR-126-3p significantly reduced the volume of tumor and microvessel density in vivo. LRP6 and PIK3R2 were identified as targets of miR-126-3p. Silencing LRP6 and PIK3R2 had similar effects of miR-126-3p restoration on metastasis and angiogenesis individually in HCC cells. Furthermore, the miR-126-3p level was inversely correlated with LRP6 and PIK3R2 in HCC tissues. In addition, the rescue experiments indicated that the metastasis and angiogenesis functions of miR-126-3p were mediated by LRP6 and PIK3R2.Conclusion: Our results demonstrates that deregulation of miR-126-3p contributes to metastasis and angiogenesis in HCC. The restoration of miR-126-3p expression may be a promising strategy for HCC therapy.
CITATION STYLE
Du, C., Lv, Z., Cao, L., Ding, C., Gyabaah, O. ansah K., Xie, H., … Zheng, S. (2014). MiR-126-3p suppresses tumor metastasis and angiogenesis of hepatocellular carcinoma by targeting LRP6 and PIK3R2. Journal of Translational Medicine, 12(1). https://doi.org/10.1186/s12967-014-0259-1
Mendeley helps you to discover research relevant for your work.