Lower bounds for number-in-hand multiparty communication complexity, made easy

62Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

Abstract

In this paper we prove lower bounds on randomized multiparty communication complexity, both in the blackboard model (where each message is written on a blackboard for all players to see) and (mainly) in the message-passing model, where messages are sent player-to-player. We introduce a new technique for proving such bounds, called symmetrization, which is natural, intuitive, and often easy to use. For example, for the problem where each of k players gets a bit-vector of length n, and the goal is to compute the coordinate-wise XOR of these vectors, we prove a tight lower bounds of Ω(nk) in the blackboard model. For the same problem with AND instead of XOR, we prove a lower bounds of roughly Ω(nk) in the message-passing model (assuming k ≤ n/3200) and Ω(n log k) in the blackboard model. We also prove lower bounds for bit-wise majority, for a graph-connectivity problem, and for other problems; the technique seems applicable to a wide range of other problems as well. The obtained communication lower bounds imply new lower bounds in the functional monitoring model [11] (also called the distributed streaming model). All of our lower bounds allow randomized communication protocols with two-sided error. We also use the symmetrization technique to prove several direct-sum-like results for multiparty communication. Copyright © SIAM.

Cite

CITATION STYLE

APA

Phillips, J. M., Verbin, E., & Zhang, Q. (2012). Lower bounds for number-in-hand multiparty communication complexity, made easy. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (pp. 486–501). Association for Computing Machinery. https://doi.org/10.1137/1.9781611973099.42

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free