A low-calcemic vitamin D analog (Ro 25-4020) inhibits the growth of LNCaP human prostate cancer cells with increased potency by producing an active 24-oxo metabolite (Ro 29-9970).

10Citations
Citations of this article
4Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In this study, we have characterized a novel less-calcemic vitamin D analog Ro 25-4020 (1alpha, 25 dihydroxy-16-ene-5,6-trans-vitamin D3) and investigated the mechanisms underlying its enhanced growth inhibitory properties. We found that Ro 25-4020 (IC50 = 0.3 nM) exhibited greater inhibitory activity than 1,25(OH)2D3 (IC50 = 1 nM) on LNCaP human prostate cancer cell growth. However, Ro 25-4020 was tenfold less active than 1,25(OH)2D3 in receptor-binding assays, ligand-induced heterodimerization and transactivation assays using VDR. HPLC and GC-MS analyses revealed that 1,25(OH)2D3 is converted to a 24-hydroxy metabolite, which has been shown to be less potent than 1,25(OH)2D3. In contrast, Ro 25-4020 was converted to a major 24-oxo metabolite that was more stable. Ligand-binding assays reveal that both Ro 25-4020 and its 24-oxo metabolite have similar affinity for VDR. Synthetic 24-oxo-Ro 25-4020, however, inhibited LNCaP cell proliferation as potently as 1,25(OH)2D3 and was more potent in transactivation of two out of three vitamin D target genes tested. These results suggest that conversion of Ro 25-4020 into an active and more stable 24-oxo metabolite with longer half-life contributes significantly to its potent antiproliferative actions on the LNCaP cells.

Cite

CITATION STYLE

APA

Swami, S., Zhao, X. Y., Sarabia, S., Siu-Caldera, M. L., Uskokovic, M., Reddy, S. G., & Feldman, D. (2003). A low-calcemic vitamin D analog (Ro 25-4020) inhibits the growth of LNCaP human prostate cancer cells with increased potency by producing an active 24-oxo metabolite (Ro 29-9970). Recent Results in Cancer Research. Fortschritte Der Krebsforschung. Progrès Dans Les Recherches Sur Le Cancer, 164, 349–352. https://doi.org/10.1007/978-3-642-55580-0_24

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free