SnO particles were synthesized by an alkali-assisted hydrothermal and microwave methods. The aqueous-based reactions were carried out at pH ~ 8, under inert atmosphere (Ar). The reactions were taken under different times, and a full XRD structural analysis was made to evaluate the conversion from the Sn6O4(OH)4 intermediate to SnO particles. Williamson-Hall analysis showed that the size and strain of the SnO particles were time and route treatment dependent. Microwave heating yielded a single tetragonal SnO phase after 1 h of thermal treatment, and TEM images revealed spherical-shaped SnO nanoparticles with an average size of 9(1) nm. While by the hydrothermal treatment single SnO phase was obtained only after 4 hours, yielding non-uniform and elongated particles with sub-micrometric size. A dissolution-recrystallization process was taken into account as the mechanism for SnO particles formation, in which hydroxylated complexes, Sn2(OH)6−2, then condense to form the oxide. The time-shorting reaction provided by the microwave-assisted synthesis may be attributed to better heat distribution.
CITATION STYLE
Dias, J. S., Batista, F. R. M., Bacani, R., & Triboni, E. R. (2020). Structural characterization of SnO nanoparticles synthesized by the hydrothermal and microwave routes. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-66043-4
Mendeley helps you to discover research relevant for your work.