The functionality of ferroelastic domain walls in ferroelectric materials is explored in real-time via the in situ implementation of computer vision algorithms in scanning probe microscopy (SPM) experiment. The robust deep convolutional neural network (DCNN) is implemented based on a deep residual learning framework (Res) and holistically nested edge detection (Hed), and ensembled to minimize the out-of-distribution drift effects. The DCNN is implemented for real-time operations on SPM, converting the data stream into the semantically segmented image of domain walls and the corresponding uncertainty. Further the pre-defined experimental workflows perform piezoresponse spectroscopy measurement on thus discovered domain walls, and alternating high- and low-polarization dynamic (out-of-plane) ferroelastic domain walls in a PbTiO3 (PTO) thin film and high polarization dynamic (out-of-plane) at short ferroelastic walls (compared with long ferroelastic walls) in a lead zirconate titanate (PZT) thin film is reported. This work establishes the framework for real-time DCNN analysis of data streams in scanning probe and other microscopies and highlights the role of out-of-distribution effects and strategies to ameliorate them in real time analytics.
CITATION STYLE
Liu, Y., Kelley, K. P., Funakubo, H., Kalinin, S. V., & Ziatdinov, M. (2022). Exploring Physics of Ferroelectric Domain Walls in Real Time: Deep Learning Enabled Scanning Probe Microscopy. Advanced Science, 9(31). https://doi.org/10.1002/advs.202203957
Mendeley helps you to discover research relevant for your work.