The estimation of ever larger phylogenies requires consideration of alternative inference strategies, including divide-and-conquer approaches that decompose the global inference problem to a set of smaller, more manageable component problems. A prominent locus of research in this area is the development of supertree methods, which estimate a composite tree by combining a set of partially overlapping component topologies. Although promising, the use of component tree topologies as the primary data dissociates supertrees from complexities within the underling character data and complicates the evaluation of phylogenetic uncertainty. We address these issues by exploring three approaches that variously incorporate nonparametric bootstrapping into a common supertree estimation algorithm (matrix representation with parsimony, although any algorithm might be used), including bootstrap-weighting, source-tree bootstrapping, and hierarchical bootstrapping. We illustrate these procedures by means of hypothetical and empirical examples. Our preliminary experiments suggest that these methods have the potential to improve the correspondence of supertree estimates to those derived from simultaneous analysis of the combined data and to allow uncertainty in supertree topologies to be quantified. The ability to increase the transparency of supertrees to the underlying character data has several practical implications and sheds new light on an old debate. These methods have been implemented in the freely available program, tREeBOOT. Copyright © Society of Systematic Biologists.
CITATION STYLE
Moore, B. R., Smith, S. A., & Donoghue, M. J. (2006). Increasing data transparency and estimating phylogenetic uncertainty in supertrees: Approaches using nonparametric bootstrapping. Systematic Biology, 55(4), 662–676. https://doi.org/10.1080/10635150600920693
Mendeley helps you to discover research relevant for your work.