Butanol, produced via traditional acetone-butanol-ethanol (ABE) fermentation, suffers from low yield and productivity. In this article, a non-ABE butanol production process is reviewed. Clostridium pasteurianum has a non-biphasic metabolism, alternatively producing 1,3-propanediol (PDO)-butanol-ethanol, referred to as PBE fermentation. This review discusses the advantages of PBE fermentation with an emphasis on applications using biodiesel-derived crude glycerol, currently an inexpensive and readily available feedstock. To address the process design challenges, various strategies have been employed and are examined and reviewed; genetic engineering and mutagenesis of C. pasteurianum, characterization and pretreatment of crude glycerol and various fermentation strategies such as bioreactor design and configuration, increasing cell density and in-situ product removal. Where research deficiencies exist for PBE fermentation, the process solutions as employed for ABE fermentation are reviewed and their suitability for PBE is discussed. Each of the obstacles against high butanol production has multiple solutions, which are reviewed with the end-goal of an integrated process for continuous high level butanol production and recovery using C. pasteurianum and biodiesel-derived crude glycerol.
CITATION STYLE
Sarchami, T., Munch, G., Johnson, E., Kießlich, S., & Rehmann, L. (2016, June 1). A review of process-design challenges for industrial fermentation of butanol from crude glycerol by non-biphasic clostridium pasteurianum. Fermentation. MDPI AG. https://doi.org/10.3390/fermentation2020013
Mendeley helps you to discover research relevant for your work.