Zinc application mitigates the adverse effects of nacl stress on mustard [brassica juncea (L.) czern & coss] through modulating compatible organic solutes, antioxidant enzymes, and flavonoid content

62Citations
Citations of this article
38Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

This study examined the protective effect of Zn on salt-stressed Brassica juncea plants using some key morphological and biochemical attributes at different developmental stages (30, 60, and 90 days after treatment [DAT]). Salt stress (200 mM) caused suppression in plant height, root length, and dry weight by 58.35%, 41.15%, and 53.33%, respectively, at 90 DAT, but Zn application improved these variables by 15.52%, 16.59%, and 11.45%, respectively. Furthermore, 200 mM NaCl decreased total chlorophyll by 45.32% and relative water content by 27.62% at 90 DAT, whereas Zn application compensated the decrease in the levels of both variables. NaCl (200 mM) increased H2 O2, malondialdehyde, and electrolyte leakage by 70.48%, 35.25%, and 68.39%, respectively, at 90 DAT, but Zn supplementation appreciably reduced these variables. Except for catalase, enzymatic antioxidant activity increased under NaCl stress. Zn application with salt further increased the activities of superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, and glutathione-S-transferase by 33.51%, 9.21%, 10.98%, 17.46%, and 12.87%, respectively, at 90 DAT. At 90 DAT, salt stress increased flavonoids by 24.88%, and Zn supply by a further 7.68%. Overall, Zn mitigated the adverse effects of salt stress through osmotic adjustment, as well as by modulating the oxidative defense system and flavonoid contents.

Cite

CITATION STYLE

APA

Ahmad, P., Ahanger, M. A., Alyemeni, M. N., Wijaya, L., Egamberdieva, D., Bhardwaj, R., & Ashraf, M. (2017). Zinc application mitigates the adverse effects of nacl stress on mustard [brassica juncea (L.) czern & coss] through modulating compatible organic solutes, antioxidant enzymes, and flavonoid content. Journal of Plant Interactions, 12(1), 429–437. https://doi.org/10.1080/17429145.2017.1385867

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free