The amino-terminal GAF domain of Azotobacter vinelandii NifA binds 2-oxoglutarate to resist inhibition by NifL under nitrogen-limiting conditions

75Citations
Citations of this article
51Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The expression of genes required for the synthesis of molybdenum nitrogenase in Azotobacter vinelandii is controlled by the NifL-NifA transcriptional regulatory complex in response to nitrogen, carbon, and redox status. Activation of nif gene expression by the transcriptional activator NifA is inhibited by direct protein-protein interaction with NifL under conditions unfavorable for nitrogen fixation. We have recently shown that the NifL-NifA system responds directly to physiological concentrations of 2-oxoglutarate, resulting in relief of NifA activity from inhibition by NifL under conditions when fixed nitrogen is limiting. The inhibitory activity of NifL is restored under conditions of excess combined nitrogen through the binding of the signal transduction protein Av GlnK to the carboxyl-terminal domain of NifL. The amino-terminal domain of NifA comprises a GAF domain implicated in the regulatory response to NifL. A truncated form of NifA lacking this domain is not responsive to 2-oxoglutarate in the presence of NifL, suggesting that the GAF domain is required for the response to this ligand. Using isothermal titration calorimetry, we demonstrate stoichiometric binding of 2-oxoglutarate to both the isolated GAF domain and the full-length A. vinelandii NifA protein with a dissociation constant of ∼60 μM. Limited proteolysis experiments indicate that the binding of 2-oxoglutarate increases the susceptibility of the GAF domain to trypsin digestion and also prevents NifL from protecting these cleavage sites. However, protection by NifL is restored when the non-modified (non-uridylylated) form of Av GlnK is also present. Our results suggest that the binding of 2-oxoglutarate to the GAF domain of NifA may induce a conformational change that prevents inhibition by NifL under conditions when fixed nitrogen is limiting.

Cite

CITATION STYLE

APA

Little, R., & Dixon, R. (2003). The amino-terminal GAF domain of Azotobacter vinelandii NifA binds 2-oxoglutarate to resist inhibition by NifL under nitrogen-limiting conditions. Journal of Biological Chemistry, 278(31), 28711–28718. https://doi.org/10.1074/jbc.M301992200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free