Background: Although a SARS-CoV-2 vaccine is readily available, new cases of COVID-19 are still occurring. New drug discovery is needed to treat COVID-19. Protein E is one of the potential targets. Two synthetic compounds of bicycloproline derivatives have the potential to be developed. Objective: This study aimed to estimate the interaction of bicycloproline compounds to protein E in-silico. Methods: There were two bicycloproline-derived compounds, MI-09 and MI-30, used in docking. Remdesivir was used as a reference ligand. The crystal structure of the E protein was created using homology modeling, while the test compound was drawn using the Marvin Sketch. MOE 2022.02 and BDS 2021 were used for docking and visualization processes. Results: The pentamer of the SARS-CoV-2 E protein obtained a clash score (1.06); poor rotatomer (0.00%); favored rotamers (98.11%); Ramachandran favored (96.43%); Ramachandran outlier (1.78%); Rama Z-score (-1.08); and mol probity (1.04). Research shows promising inhibition potential of the MI-09 and MI-30. The MI-30 has the best binding energy of -10.3326 kcal/mol. Conclusion: The docking results show that MI-30 has potency as an inhibitor of protein E and can be developed in treating COVID-19. Further research is needed to confirm the result by in vitro and in vivo studies.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Prayogi, S., Dhiani, B. A., & Djalil, A. D. (2023). Molecular Docking of Bicycloproline Derivative Synthetic Compounds on Envelope Protein: Anti-SARS-CoV-2 Drug Discovery. JURNAL FARMASI DAN ILMU KEFARMASIAN INDONESIA, 10(1), 11–21. https://doi.org/10.20473/jfiki.v10i12023.11-21