Soil moisture (SM) is a crucial driving variable for the global land surface-atmosphere water and energy cycle. There are now many satellite-based SM products available internationally and it is necessary to consider all available SM products under the same context for comprehensive assessment and inter-comparisons at the global scale. Moreover, product performances varying with dynamic environmental factors, especially those closely related to retrieval algorithms, were less investigated. Therefore, this study evaluated and identified the relative strengths of nine mainstream satellite-based SM products derived from the Advanced Microwave Scanning Radiometer 2 (AMSR2), Chinese Fengyun-3B (FY3B), the Soil Moisture Active Passive (SMAP), the Soil Moisture and Ocean Salinity (SMOS), and the European Space Agency (ESA) Climate Change Initiative (CCI) by using the Pearson correlation coefficient (R), R of SM seasonal anomalies (Ranom), unbiased Root Mean Square Error (ubRMSE), and bias metrics against ground observations from the International Soil Moisture Network (ISMN), as well as the Global Land Data Assimilation System (GLDAS) Noah model simulations, overall and under three dynamic (Land Surface Temperature (LST), SM, and Vegetation Optical Depth (VOD)) conditions. Results showed that the SMOS-INRA-CESBIO (IC) product outperformed the SMOSL3 product in most cases, especially in Australia, but it exhibited greater variability and higher random errors in Asia. ESA CCI products outperformed other products in capturing the spatial dynamics of SM seasonal anomalies and produced significantly high accuracy in croplands. Although the Chinese FY3B presented poor skills in most cases, it had a good ability to capture the temporal dynamics of the original SM and SM seasonal anomalies in most regions of central Africa. Under various land cover types, with the changes in LST, SM, and VOD, different products exhibited distinctly dynamic error characteristics. Generally, all products tended to overestimate the low in-situ SM content but underestimate the high in-situ SM content. It is expected that these findings can provide guidance and references for product improvement and application promotions in water exchange and land surface energy cycle.
CITATION STYLE
Min, X., Shangguan, Y., Huang, J., Wang, H., & Shi, Z. (2022). Relative Strengths Recognition of Nine Mainstream Satellite-Based Soil Moisture Products at the Global Scale. Remote Sensing, 14(12). https://doi.org/10.3390/rs14122739
Mendeley helps you to discover research relevant for your work.