Energy representation for nonequilibrium Brownian-like systems: Steady states and fluctuation relations

11Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Stochastic dynamics in the energy representation is used as a method to represent nonequilibrium Brownian-like systems. It is shown that the equation of motion for the energy of such systems can be taken in the form of the Langevin equation with multiplicative noise. Properties of the steady states are examined by solving the Fokker-Planck equation for the energy distribution functions. The generalized integral fluctuation theorem is deduced for the systems characterized by the shifted probability flux operator. From this theorem, a number of entropy and fluctuation relations such as the Evans-Searles fluctuation theorem, the Hatano-Sasa identity, and the Jarzynski's equality are derived. © 2010 The American Physical Society.

Cite

CITATION STYLE

APA

Lev, B. I., & Kiselev, A. D. (2010). Energy representation for nonequilibrium Brownian-like systems: Steady states and fluctuation relations. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 82(3). https://doi.org/10.1103/PhysRevE.82.031101

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free