Reconstructing topological properties of complex networks using the fitness model

5Citations
Citations of this article
42Readers
Mendeley users who have this article in their library.
Get full text

Abstract

A major problem in the study of complex socioeconomic systems is represented by privacy issues—that can put severe limitations on the amount of accessible information, forcing to build models on the basis of incomplete knowledge. In this paper we investigate a novel method to reconstruct global topological properties of a complex network starting from limited information. This method uses the knowledge of an intrinsic property of the nodes (indicated as fitness), and the number of connections of only a limited subset of nodes, in order to generate an ensemble of exponential random graphs that are representative of the real systems and that can be used to estimate its topological properties. Here we focus in particular on reconstructing the most basic properties that are commonly used to describe a network: density of links, assortativity, clustering. We test the method on both benchmark synthetic networks and real economic and financial systems, finding a remarkable robustness with respect to the number of nodes used for calibration. The method thus represents a valuable tool for gaining insights on privacy-protected systems.

Cite

CITATION STYLE

APA

Cimini, G., Squartini, T., Musmeci, N., Puliga, M., Gabrielli, A., Garlaschelli, D., … Caldarelli, G. (2015). Reconstructing topological properties of complex networks using the fitness model. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 8852, pp. 323–333). Springer Verlag. https://doi.org/10.1007/978-3-319-15168-7_41

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free