Inspired by Jacobson's thermodynamic approach [4], Cai et al. [5, 6] have shown the emergence of Friedmann equations from the first law of thermodynamics. We extend Akbar-Cai derivation [6] of Friedmann equations to accommodate a general entrop-yarea law. Studying the resulted Friedmann equations using a specific entropy-area law, which is motivated by the generalized uncertainty principle (GUP), reveals the existence of a maximum energy density closed to Planck density. Allowing for a general continuous pressure p(ρ, a) leads to bounded curvature invariants and a general nonsingular evolution. In this case, the maximum energy density is reached in a finite time and there is no cosmological evolution beyond this point which leaves the big bang singularity inaccessible from a spacetime prospective. The existence of maximum energy density and a general nonsingular evolution is independent of the equation of state and the spacial curvature k. As an example we study the evolution of the equation of state p = ωρ through its phase-space diagram to show the existence of a maximum energy which is reachable in a finite time. © 2014 The Author(s).
CITATION STYLE
Awad, A., & Ali, A. F. (2014). Minimal length, Friedmann equations and maximum density. Journal of High Energy Physics, 2014(6). https://doi.org/10.1007/JHEP06(2014)093
Mendeley helps you to discover research relevant for your work.