We describe our system for WMT2015 Shared Task on Quality Estimation, task 1, sentence-level prediction of post-edition effort. We use baseline features, Latent Semantic Indexing based features and features based on pseudo-references. SVM algorithm allows to estimate the linear regression between the features vectors and the HTER score. We use a selection algorithm in order to put aside needless features. Our best system leads to a performance in terms of Mean Absolute Error equal to 13.34 on official test while the official baseline system leads to a performance equal to 14.82.
CITATION STYLE
David, L. (2015). Loria system for the wmt15 quality estimation shared task. In 10th Workshop on Statistical Machine Translation, WMT 2015 at the 2015 Conference on Empirical Methods in Natural Language Processing, EMNLP 2015 - Proceedings (pp. 323–329). Association for Computational Linguistics (ACL). https://doi.org/10.18653/v1/w15-3038
Mendeley helps you to discover research relevant for your work.