This study evaluated the composition, digestibility [dry matter digestibility (DMD)], CH4 abatement potential, and fatty acid biohydrogenation of six species of microalgae. Lipid content ranged from 115 g kg-1 dry matter (DM) (Scenedesmus sp. AMDD) to 361 g kg-1 DM (Tetracystis sp.), while Scenedesmus sp. AMDD had the highest carbohydrate (364 g kg-1 DM) and fibre content (277 g kg-1 DM). Gas production was highest (P < 0.001) for Micractinium reisseri and Chlorella vulgaris. In vitro DMD ranged from 654 g kg-1 for Scenedesmus sp. AMDD to 797 g kg-1 for Nannochloris bacillaris. Total CH4 differed (P < 0.001) among microalgae, ranging from 1.76 mL g-1 DM for Tetracystis sp. to 4.07 mL g-1 DM for M. reisseri. Nannochloropsis granulata (marine) had higher myristic, palmitoleic, and eicosapentaenoic acid levels than freshwater microalgae. Levels of α-linolenic acid were higher in Scenedesmus sp. AMDD than all other microalgae. CH4 production negatively correlated (P < 0.05) with levels of total carbohydrate, oleic, and α-linolenic acid. Despite having a lower lipid content, CH4 reductions with Scenedesmus sp. AMDD were comparable to Tetracystis sp. and N. bacillaris. Reductions in CH4 with Tetracystis sp. and N. bacillaris occurred without a decline in DMD, suggesting that overall microbial activity was not inhibited.
CITATION STYLE
Anele, U. Y., Yang, W. Z., McGinn, P. J., Tibbetts, S. M., & McAllister, T. A. (2016). Ruminal in vitro gas production, dry matter digestibility, methane abatement potential, and fatty acid biohydrogenation of six species of microalgae. Canadian Journal of Animal Science, 96(3), 354–363. https://doi.org/10.1139/cjas-2015-0141
Mendeley helps you to discover research relevant for your work.