The interaction of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) is of considerable importance in nitrification process. Ecophysiological interactions between the communities of AOB and NOB were investigated by monitoring NO2− as the intermediate compound in an organic carbon-depleted nitrifying activated sludge fed only NH4+ as a nitrogen source (40 mg/L). The presence of boom and bust (feast and famine) cycle successfully indicates the activity cycles of AOB and NOB through cultivation-dependent method. The maximum growth rate and yield for AOB in nitritation-dominant period were (0.67 day−1, 0.17 gVSS gN−1) and for NOB in nitratation-dominant period were (0.71 day−1, 0.072 gVSS gN−1). Soluble microbial products (SMP) and extracellular polymeric substances (EPS) generated by AOB were 1.2 and 1.8 mg/L, respectively, while NOB produced 0.6 mg/L of SMP and 1 mg/L of EPS. While NOB were low in utilization-associated products (UAP) (0.07 mg/L) and biomass-associated products (BAP) (0.12 mg/L), AOB were higher in UAP (0.15 mg/L) and BAP (0.3 mg/L). The continuation presence of zero C/N ratio, in either inlet ratio or net available ratio for the microbial community, can prolong and enhance nitratation process. NOB enrichment and nitratation intensification strategy through zero C/N ratio are able to reduce remarkably microbial metabolites 50% lower than conventional process and enhance nitrification efficiency in activated sludge-involved processes.
CITATION STYLE
Sepehri, A., & Sarrafzadeh, M. H. (2019). Activity enhancement of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria in activated sludge process: metabolite reduction and CO2 mitigation intensification process. Applied Water Science, 9(5). https://doi.org/10.1007/s13201-019-1017-6
Mendeley helps you to discover research relevant for your work.