Floating photovoltaic system for reservoirs is a recent innovative technology that is highly advantageous in reducing evaporation while generating solar power. In addition, the integration of floating photovoltaic systems with the existing hydroelectric power plants will increase renewable power production. The present study aims to assess the electrical performance of floating photovoltaic systems in major reservoirs with existing hydroelectric power plants in India. The reservoirs with large water surface area were selected for the study, and a model floating photovoltaic system with a 5-MW capacity was designed for the selected reservoirs. The numerical analysis showed that installing floating photovoltaic systems will result in an annual energy yield of 160 GWh. Further, the systems also save 1.40 million cubic meters of water per day and also help in generating additional energy of 514.80 MWh/day from the saved water through its integration with hydroelectric power plants. A single-axis tracking mechanism to the floating photovoltaic systems will increase the annual energy generation by 11%. The detailed cost analysis and carbon emission analysis were also carried out. The results indicate that the tracking mechanisms increase the total installation cost of the systems. The annual carbon emission reduction from the floating photovoltaic systems accounts for about 3.30 million tons of CO2. The obtained results highlight the suitability of this innovative technology for installation in Indian reservoirs and its effectiveness in reducing evaporation and carbon emission. Graphic abstract: [Figure not available: see fulltext.].
CITATION STYLE
Ravichandran, N., Ravichandran, N., & Panneerselvam, B. (2022). Floating photovoltaic system for Indian artificial reservoirs—an effective approach to reduce evaporation and carbon emission. International Journal of Environmental Science and Technology, 19(8), 7951–7968. https://doi.org/10.1007/s13762-021-03686-4
Mendeley helps you to discover research relevant for your work.