What frog gill resorption brings: loss of function, cell death, and metabolic reorganization

0Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Anuran metamorphosis, which is driven by thyroid hormone (TH)-mediated processes, orchestrates intricate morphological and functional transformations for the transition from aquatic tadpoles to terrestrial life, providing a valuable model for studying organ functionalization, remodeling, and regression. Larva-specific organ regression is one of the most striking phenomena observed during the anuran metamorphic climax. While previous studies extensively analyzed the regression mechanisms of the tail, the molecular processes governing gill resorption remain elusive. Results: We employed Microhyla fissipes as a model, and utilized a comprehensive approach involving histological analysis, transmission electron microscopy, and transcriptomics to unravel gill development and resorption. The pro-metamorphic stages revealed highly developed gill structures, emphasizing their crucial role as the primary respiratory organ for tadpoles. The transcriptomic analysis highlighted the upregulation of genes associated with enhanced respiratory efficiency, such as hemoglobin and mucins. However, as metamorphosis progressed, gill filaments underwent shrinkage, decreases in blood vessel density, and structural changes that signified a decline in respiratory function. The molecular mechanisms driving gill resorption involved the TH pathway—in particular, the upregulation of thyroid hormone receptor (TR) β, genes associated with the tumor necrosis factor pathway and matrix metalloproteinases. Two distinct pathways orchestrate gill resorption, involving apoptosis directly induced by TH and cell death through the degradation of the extracellular matrix. In addition, metabolic reorganization during metamorphosis is a complex process, with tadpoles adapting their feeding behavior and mobilizing energy storage organs. The gills, which were previously overlooked, have been unveiled as potential energy storage organs that undergo metabolic reorganization. The transcriptomic analysis revealed dynamic changes in metabolism-related genes, indicating decreased protein synthesis and energy production and enhanced substrate transport and metabolism during metamorphic climax. Conclusion: This study sheds light on the structural, molecular, and metabolic dynamics during gill development and resorption in M. fissipes. The findings deepen our understanding of the intricate mechanisms governing organ regression and underscore the pivotal role of the gills in facilitating the transition from aquatic to terrestrial habitats.

Cite

CITATION STYLE

APA

Chang, L., Zhu, W., & Jiang, J. (2024). What frog gill resorption brings: loss of function, cell death, and metabolic reorganization. Frontiers in Zoology, 21(1). https://doi.org/10.1186/s12983-024-00532-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free