A key challenge in responding to the emerging challenges in agri-food supply chains is encouraging continued new investment. This is related to the recognition that agricultural production is often a lengthy process requiring ongoing investments that may not produce expected returns for a prolonged period, thereby being highly sensitive to market risks. Agricultural productions are generally susceptible to different serious risks such as crop diseases, weather conditions, and pest infections. Many practitioners in this domain, particularly small and medium-sized enterprises (SMEs), have shifted toward digitalization to address such problems. To help with this situation, the current paper develops an integrated decision-making framework, with the Pythagorean fuzzy sets (PFSs), the method for removal effects of criteria (MEREC), the rank-sum (RS) and the gained and Lost dominance score (GLDS) termed as PF-MEREC-RS-GLDS approach. In this approach, the PF-MEREC-RS method is applied to compute the subjective and objective weights of the main risks to assess the agriculture supply chain for investments of SMEs, and the PF-GLDS model is used to assess the preferences of enterprises over different the main risks to assess of the agriculture supply chain for investments of SMEs. An empirical case study is taken to evaluate the main risks to assess the agriculture supply chain for SME investments. Also, comparison and sensitivity investigation are made to show the superiority of the developed framework.
CITATION STYLE
Zhai, T., Wang, D., Zhang, Q., Saeidi, P., & Raj Mishra, A. (2023). Assessment of the agriculture supply chain risks for investments of agricultural small and medium-sized enterprises (SMEs) using the decision support model. Economic Research-Ekonomska Istrazivanja , 36(2). https://doi.org/10.1080/1331677X.2022.2126991
Mendeley helps you to discover research relevant for your work.