Bioaerosols are the dominant source of warm-temperature immersion-mode INPs and drive uncertainties in INP predictability

12Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Ice-nucleating particles (INPs) are rare atmospheric aerosols that initiate primary ice formation, but accurately simulating their concentrations and variability in large-scale climate models remains a challenge. Doing so requires both simulating major particle sources and parameterizing their ice nucleation (IN) efficiency. Validating and improving model predictions of INP concentrations requires measuring their concentrations delineated by particle type. We present a method to speciate INP concentrations into contributions from dust, sea spray aerosol (SSA), and bioaerosol. Field campaign data from Bodega Bay, California, showed that bioaerosols were the primary source of INPs between −12° and −20°C, while dust was a minor source and SSA had little impact. We found that recent parameterizations for dust and SSA accurately predicted ambient INP concentrations. However, the model did not skillfully simulate bioaerosol INPs, suggesting a need for further research to identify major factors controlling their emissions and INP efficiency for improved representation in models.

Cite

CITATION STYLE

APA

Cornwell, G. C., McCluskey, C. S., Hill, T. C. J., Levin, E. T., Rothfuss, N. E., Tai, S. L., … Burrows, S. M. (2023). Bioaerosols are the dominant source of warm-temperature immersion-mode INPs and drive uncertainties in INP predictability. Science Advances, 9(37). https://doi.org/10.1126/sciadv.adg3715

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free