Psoriatic arthritis (PsA), a heterogeneous chronic inflammatory immune-mediated disease characterized by musculoskeletal inflammation (arthritis, enthesitis, spondylitis, and dactylitis), generally occurs in patients with psoriasis. PsA is also associated with uveitis and inflammatory bowel disease (Crohn’s disease and ulcerative colitis). To capture these manifestations as well as the associated comorbidities, and to recognize their underlining common pathogenesis, the name of psoriatic disease was coined. The pathogenesis of PsA is complex and multifaceted, with an interplay of genetic predisposition, triggering environmental factors, and activation of the innate and adaptive immune system, although autoinflammation has also been implicated. Research has identified several immune-inflammatory pathways defined by cytokines (IL-23/IL-17, TNF), leading to the development of efficacious therapeutic targets. However, heterogeneous responses to these drugs occur in different patients and in the different tissues involved, resulting in a challenge to the global management of the disease. Therefore, more translational research is necessary in order to identify new targets and improve current disease outcomes. Hopefully, this may become a reality through the integration of different omics technologies that allow better understanding of the relevant cellular and molecular players of the different tissues and manifestations of the disease. In this narrative review, we aim to provide an updated overview of the pathophysiology, including the latest findings from multiomics studies, and to describe current targeted therapies.
CITATION STYLE
Azuaga, A. B., Ramírez, J., & Cañete, J. D. (2023, March 1). Psoriatic Arthritis: Pathogenesis and Targeted Therapies. International Journal of Molecular Sciences. Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/ijms24054901
Mendeley helps you to discover research relevant for your work.