Some properties of the Mittag-Leffler functions and their relation with the wright functions

25Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

Abstract

This paper is a short description of our recent results on an important class of the so-called Mittag-Leffler functions, which became important as solutions of fractional order differential and integral equations, control systems and refined mathematical models of various physical, chemical, economical, management and bioengineering phenomena. We have studied the Mittag-Leffler functions as their typical representatives, including many interesting special cases that have already proven their usefulness in fractional calculus and its applications. We obtained a number of useful relationships between the Mittag-Leffler functions and the Wright functions. The Wright function plays an important role in the solution of a linear partial differential equation. The Wright function, which we denote by [InlineEquation not available: see fulltext.], is so named in honor of Wright who introduced and investigated this function in a series of notes starting from 1933 in the framework of the asymptotic theory of partitions. MSC: 33E12. © 2012 Kurulay and Bayram; licensee Springer.

Cite

CITATION STYLE

APA

Kurulay, M., & Bayram, M. (2012). Some properties of the Mittag-Leffler functions and their relation with the wright functions. Advances in Difference Equations, 2012. https://doi.org/10.1186/1687-1847-2012-181

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free