Controlled Synthesis of Ag-SnO2/α-Fe2O3 Nanocomposites for Improving Visible-Light Catalytic Activities of Pollutant Degradation and CO2 Reduction

8Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

The key to developing highly active α-Fe2O3-based photocatalysts is to improve the charge separation and efficiently utilize the electrons with sufficient thermodynamic energy. Herein, α-Fe2O3 nanosheets (FO) were synthesized using a metal-ion-intervened hydrothermal method and then coupled with SnO2 nanosheets (SO) to obtain SO/FO nanocomposites. Subsequently, nanosized Ag was selectively loaded on SO using the photo-deposition method to result in the ternary Ag-SO/FO nanocomposites. The optimal nanocomposite could realize the efficient aerobic degradation of 2,4-dichlorophenol as a representative organic pollutant under visible-light irradiation (>420 nm), exhibiting nearly six-fold degradation rates of that for FO. Additionally, the Ag-SO/FO photocatalyst is also applicable to the visible-light degradation of other organic pollutants and even CO2 reduction. By using steady-state surface photovoltage spectroscopy, fluorescence spectroscopy, and electrochemical methods, the photoactivity enhancement of Ag-SO/FO is principally attributed to the improved charge separation by introducing SO as an electron platform for the high-energy-level electrons of FO. Moreover, nanosized Ag on SO functions as a cocatalyst to further improve the charge separation and facilitate the catalytic reduction. This work provides a feasible design strategy for narrow-bandgap semiconductor-based photocatalysts by combining an electron platform and a cocatalyst.

Cite

CITATION STYLE

APA

Ali, W., Li, Z., Bai, L., Ansar, M. Z., Zada, A., Qu, Y., … Jing, L. (2023). Controlled Synthesis of Ag-SnO2/α-Fe2O3 Nanocomposites for Improving Visible-Light Catalytic Activities of Pollutant Degradation and CO2 Reduction. Catalysts, 13(4). https://doi.org/10.3390/catal13040696

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free