Conventional nanozyme technologies face formidable challenges of intricate size-, composition-, and facet-dependent catalysis and inherently low active site density. We discovered a new class of single-atom nanozymes with atomically dispersed enzyme-like active sites in nanomaterials, which significantly enhanced catalytic performance, and uncovered the underlying mechanism. With oxidase catalysis as a model reaction, experimental studies and theoretical calculations revealed that single-atom nanozymes with carbon nanoframe-confined FeN5 active centers (FeN5 SA/CNF) catalytically behaved like the axial ligand-coordinated heme of cytochrome P450. The definite active moieties and crucial synergistic effects endow FeN5 SA/CNF with a clear electron push-effect mechanism, as well as the highest oxidase-like activity among other nanozymes (the rate constant is 70 times higher than that of commercial Pt/C) and versatile antibacterial applications. These suggest that the single-atom nanozymes have great potential to become the next-generation nanozymes.
CITATION STYLE
Huang, L., Chen, J., Gan, L., Wang, J., & Dong, S. (2019). Single-atom nanozymes. Science Advances, 5(5). https://doi.org/10.1126/sciadv.aav5490
Mendeley helps you to discover research relevant for your work.