Highly coherent spin states in carbon nanotubes coupled to cavity photons

40Citations
Citations of this article
75Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Spins confined in quantum dots are considered as a promising platform for quantum information processing. While many advanced quantum operations have been demonstrated, experimental as well as theoretical efforts are now focusing on the development of scalable spin quantum bit architectures. One particularly promising method relies on the coupling of spin quantum bits to microwave cavity photons. This would enable the coupling of distant spins via the exchange of virtual photons for two qubit gate applications, which still remains to be demonstrated with spin qubits. Here, we use a circuit QED spin–photon interface to drive a single electronic spin in a carbon nanotube-based double quantum dot using cavity photons. The microwave spectroscopy allows us to identify an electrically controlled spin transition with a decoherence rate which can be tuned to be as low as 250 kHz. We show that this value is consistent with the expected hyperfine coupling in carbon nanotubes. These coherence properties, which can be attributed to the use of pristine carbon nanotubes stapled inside the cavity, should enable coherent spin–spin interaction via cavity photons and compare favorably to the ones recently demonstrated in Si-based circuit QED experiments. Our clean and controlled nano-assembly technique of carbon nanotubes in the cavity could be further improved by purified 12C growth to get rid of the nuclear spins resulting in an even higher spin coherence.

Cite

CITATION STYLE

APA

Cubaynes, T., Delbecq, M. R., Dartiailh, M. C., Assouly, R., Desjardins, M. M., Contamin, L. C., … Kontos, T. (2019). Highly coherent spin states in carbon nanotubes coupled to cavity photons. Npj Quantum Information, 5(1). https://doi.org/10.1038/s41534-019-0169-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free