Secure transmission of grayscale images with triggered error visual sharing

2Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In the digital era, data transfer plays a crucial role in various industries such as banking, healthcare, marketing, and social media. Images are widely used as a means of communication. The presence of cyber attackers poses a significant risk to data integrity and security during transmission. According to the cost of data breach report 2021, the healthcare industry has experienced the highest costs associated with data breaches, highlighting the need for robust security measures. Visual cryptography (VC) is a technique used to secure image data during transmission. It involves encrypting the image and dividing it into shares, which are then communicated to the intended recipients. Each individual share does not reveal any classified information. At the destination, the shares are digitally combined to reconstruct the original image. When implementing VC, several factors need to be considered, including security, computational complexity, and the quality of the reconstructed image. In this paper, a new method called progressive meaningful visual cryptography (PMVC) is proposed for transferring secret images. The PMVC method introduces an error instance that triggers meaningful shares generation. The proposed method ensures the quality of the reconstructed image by achieving a peak signal-to-noise ratio (PSNR) of up to 37 dB.

Cite

CITATION STYLE

APA

Blesswin, J., Mary, S., Suryawanshi, S., Kshirsagar, V., Pabalkar, S., Venkatesan, M., & Karunya, C. E. (2023). Secure transmission of grayscale images with triggered error visual sharing. Journal of Autonomous Intelligence, 6(2). https://doi.org/10.32629/jai.v6i2.957

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free